
For

Audit Report

December, 2024

01www.quillaudits.com

W Coin Migration - Audit Report

….. 02Executive Summary

......…... 03Number of Security Issues per Severity

... 04Checked Vulnerabilities

... 06Techniques and Methods

.. 07Types of Severity

......….. 07Types of Issues

081. Risk of DOS due to signer array becoming very large

092. Use call instead of transfer

115. Immutable chainId can be problematic in case of hard fork

093. CEI pattern is not followed

104. Use abi.encode instead of abi.encodePacked

08Medium Severity Issues

09Low Severity Issues

11Informational Issues

...…... 13Closing Summary

.........………………... 12Functional Tests

......….. 12Automated Tests Cases

.................................…………….. 13Disclaimer

Table of Content

https://www.quillaudits.com/smart-contract-audit

02www.quillaudits.com

W Coin Migration - Audit Report

Project Name W Coin Migration

Project URL https://w-chain.com/

Blockchain W Chain

Language Solidity

Method Manual Analysis, Functional Testing, Automated Testing

Overview WChainMigration contract facilitates secure asset migration
between chains with multi-signature verification (2/3 signers),
nonce-based replay protection, and robust tracking of claims. It
incorporates a designated backend address for executing claims,
manages ETH and ERC20 transfers safely, and prevents
unauthorized actions. Features include signer management, claim
tracking, and stringent validation for addresses and transactions.

Audit Scope The scope of this Audit was to analyze the W Coin Migration Smart
Contracts for quality, security, and correctness.

0x43cbB94a3B14C1D5e66104C835B6FF31c6595cAf

Contracts In Scope WChainMigration.sol

Executive Summary

Review 1 25th December 2024 - 27th December 2024

Updated Code Received 30th December 2024

Review 2 2nd January 2024

Fixed In WChainMigration
sepolia
0xC9c7c4065ed6f40D65AF4370f7bF019eC225b43F
WChain Testnet
0xe746CD88Cd41673Df0e60f7b5DDB71Ee8A77e316

https://www.quillaudits.com/smart-contract-audit
https://w-chain.com/

03www.quillaudits.com

W Coin Migration - Audit Report

0

0

0

1 12

1

0

0

0

0

0

0

0

0

0Open Issues

Acknowledged Issues

Partially Resolved Issues

Resolved Issues

High Medium Low Informational

High

Low

Medium

Informational
Issues Found

5

Number of Security Issues per Severity

https://www.quillaudits.com/smart-contract-audit

04www.quillaudits.com

W Coin Migration - Audit Report

Checked Vulnerabilities

Access Management

Arbitrary write to storage

Centralization of control

Ether theft

Improper or missing events

Logical issues and flaws

Arithmetic Correctness

Race conditions/front running

SWC Registry

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Malicious libraries

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

ERC’s conformance

Dangerous strict equalities

Tautology or contradiction

Return values of low-level calls

Missing Zero Address Validation

Private modifier

Revert/require functions

Multiple Sends

Using suicide

Using delegatecall

Upgradeable safety

Using throw

https://www.quillaudits.com/smart-contract-audit

05www.quillaudits.com

W Coin Migration - Audit Report

Checked Vulnerabilities

Using inline assembly

Style guide violation

Unsafe type inference

Implicit visibility level

06www.quillaudits.com

W Coin Migration - Audit Report

Techniques and Methods

Throughout the audit of smart contracts, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments, match logic and expected behavior.
Token distribution and calculations are as per the intended behavior mentioned in the
whitepaper.
Implementation of ERC standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods, and tools were used to review all the smart contracts.

In this step, we have analyzed the design patterns and structure of smart contracts. A
thorough check was done to ensure the smart contract is structured in a way that will not
result in future problems.

Structural Analysis

A static Analysis of Smart Contracts was done to identify contract vulnerabilities. In this
step, a series of automated tools are used to test the security of smart contracts.

Static Analysis

Manual Analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually
analyzed, their logic was checked and compared with the one described in the
whitepaper. Besides, the results of the automated analysis were manually verified.

Code Review / Manual Analysis

In this step, we have checked the behavior of smart contracts in production. Checks were
done to know how much gas gets consumed and the possibilities of optimization of code
to reduce gas consumption.

Gas Consumption

Remix IDE, Foundry, Solhint, Mythril, Slither, Solidity Statistic Analysis.
Tools and Platforms used for Audit

https://www.quillaudits.com/smart-contract-audit

07www.quillaudits.com

W Coin Migration - Audit Report

Every issue in this report has been assigned to a severity level. There are four levels of
severity, and each of them has been explained below.

Types of Severity

A high severity issue or vulnerability means that your smart contract can be exploited.
Issues on this level are critical to the smart contract’s performance or functionality, and
we recommend these issues be fixed before moving to a live environment.

High Severity Issues

The issues marked as medium severity usually arise because of errors and deficiencies in
the smart contract code. Issues on this level could potentially bring problems, and they
should still be fixed.

Medium Severity Issues

Low-level severity issues can cause minor impact and are just warnings that can remain
unfixed for now. It would be better to fix these issues at some point in the future.

Low Severity Issues

These are four severity issues that indicate an improvement request, a general question,
a cosmetic or documentation error, or a request for information. There is low-to-no
impact.

Informational

Types of Issues

Security vulnerabilities identified that must be resolved and are currently unresolved.
Open

These are the issues identified in the initial audit and have been successfully fixed.
Resolved

Vulnerabilities which have been acknowledged but are yet to be resolved.
Acknowledged

Considerable efforts have been invested to reduce the risk/impact of the security issue,
but are not completely resolved.

Partially Resolved

https://www.quillaudits.com/smart-contract-audit

08www.quillaudits.com

W Coin Migration - Audit Report

1. Risk of DOS due to signer array becoming very large

Path

Description

Function name

Recommendation

WChainMigration.sol

The addSigner function contains a potential Denial of Service (DOS) vulnerability due to an
unbounded array of signers. The function performs a linear search through the _signers
array to check for duplicates before adding a new signer. As the number of signers grows,
the gas cost of this operation increases linearly, potentially making the function unusable if
the array becomes too large.

The issue is present in two locations:

This could lead to:

1. The addSigner function's duplicate check loop

- Excessive gas consumption for signer management operations

- Replace the linear search with direct mapping access

2. The removeSigner function's search loop

- Function calls potentially exceeding the block gas limit

- Use EnumerableSet from OpenZeppelin for efficient membership checks and enumeration

- Contract becoming unusable if too many signers are added

addSigner(), removeSigner()

Consider using a more gas-efficient data structure:

Status
Resolved

Medium Severity Issues

09www.quillaudits.com

W Coin Migration - Audit Report

2. Use call instead of transfer

Path

Description

Function name

Recommendation

WChainMigration.sol

The claim function uses the deprecated transfer() method to send ETH to users. The
transfer() function forwards a fixed gas stipend of 2300 gas, which can cause the
transaction to fail if the recipient is a smart contract with complex logic in its receive/fallback
functions.

claim()

Replace transfer() with a call().

Status
Resolved

3. CEI pattern is not followed

Path

Description

Function name

Recommendation

WChainMigration.sol

The claim function violates the Checks-Effects-Interactions (CEI) pattern by performing an
external call (transfer) before updating the contract's state variables. This creates a
potential reentrancy vulnerability where an attacker could re-enter the contract before state
changes are applied.

claim()

Reorganize the code to follow the CEI pattern.

Status
Resolved

Low Severity Issues

10www.quillaudits.com

W Coin Migration - Audit Report

4. Use abi.encode instead of abi.encodePacked

Path

Description

W Chain Team's Comment

WChainMigration.sol

abi.encodePacked() should not be used with dynamic types when passing the result to a
hash function such as keccak256().

Use abi.encode() instead which will pad items to 32 bytes, which will prevent hash
collisions (e.g. abi.encodePacked(0x123,0x456) => 0x123456 =>
abi.encodePacked(0x1,0x23456), but abi.encode(0x123,0x456) => 0x0...1230...456).

Unless there is a compelling reason, abi.encode should be preferred. If there is only one
argument to abi.encodePacked() it can often be cast to bytes() or bytes32() instead. If all
arguments are strings and or bytes, bytes.concat() should be used instead.

We didn't update abi.encodePacked because it uses the same parameters as uint256. So
the result of abi.encodePacked is the same as abi.encode and therefore doesn't cause any
security issues.

Status
Acknowledged

https://docs.soliditylang.org/en/v0.8.13/abi-spec.html#non-standard-packed-mode
https://docs.soliditylang.org/en/v0.8.13/abi-spec.html#non-standard-packed-mode
https://ethereum.stackexchange.com/questions/30912/how-to-compare-strings-in-solidity#answer-82739

11www.quillaudits.com

W Coin Migration - Audit Report

5. Immutable chainId can be problematic in case of hard fork

Path

Description

Recommendation

WChainMigration.sol

Using an immutable chainId in the contract poses a risk during network hard forks. When a
network undergoes a hard fork, it can result in two separate chains with different chainIds.
If the contract's chainId is immutable (hardcoded), the contract will continue to operate with
the original chainId.

Make chainId updateable by governance.

Status
Resolved

Informational Issues

12www.quillaudits.com

W Coin Migration - Audit Report

Functional Tests

signature verification system with multi-signature implementation correctly enforces
2/3 threshold verification, validates signatures via ecrecover, prevents duplicate
signers, and employs a strong nonce mechanism to mitigate replay attacks

Claim a contract doesn't verify if it has enough ETH balance before the transfer

Some of the tests performed are mentioned below:

Automated Tests
No major issues were found. Some false positive errors were reported by the tools. All the other
issues have been categorized above according to their level of severity.

13www.quillaudits.com

W Coin Migration - Audit Report

Closing Summary
In this report, we have considered the security of W Coin Migration. We performed our audit
according to the procedure described above.

Some issues of medium, low and informational severity were found. Some suggestions, gas
optimizations and best practices are also provided in order to improve the code quality and
security posture. In the end, W Coin Migration Team, almost resolved all Issues.

Disclaimer
QuillAudits Smart contract security audit provides services to help identify and mitigate potential
security risks in W Coin Migration. However, it is important to understand that no security audit
can guarantee complete protection against all possible security threats. QuillAudits audit reports
are based on the information provided to us at the time of the audit, and we cannot guarantee
the accuracy or completeness of this information. Additionally, the security landscape is
constantly evolving, and new security threats may emerge after the audit has been completed.

Therefore, it is recommended that multiple audits and bug bounty programs be conducted to
ensure the ongoing security of W Coin Migration. One audit is not enough to guarantee complete
protection against all possible security threats. It is important to implement proper risk
management strategies and stay vigilant in monitoring your smart contracts for potential security
risks.

QuillAudits cannot be held liable for any security breaches or losses that may occur subsequent
to and despite using our audit services. It is the responsibility of W Coin Migration to implement
the recommendations provided in our audit reports and to take appropriate steps to mitigate
potential security risks.

https://www.quillaudits.com/smart-contract-audit

www.quillaudits.com

W Coin Migration - Audit Report

Follow Our Journey

1M+
Lines of Code Audited

$30B
Secured

1000+
Audits Completed

About QuillAudits
QuillAudits is a leading name in Web3 security, offering top-notch solutions to safeguard projects

across DeFi, GameFi, NFT gaming, and all blockchain layers. With six years of expertise, we’ve
secured over 1000 projects globally, averting over $30 billion in losses. Our specialists rigorously
audit smart contracts and ensure DApp safety on major platforms like Ethereum, BSC, Arbitrum,

Algorand, Tron, Polygon, Polkadot, Fantom, NEAR, Solana, and others, guaranteeing your project’s
security with cutting-edge practices.

https://www.quillaudits.com/smart-contract-audit
https://x.com/quillaudits_ai
https://www.linkedin.com/company/quillaudits/
https://t.me/QuillAudits
https://www.reddit.com/r/QuillAudits/
https://quillaudits.medium.com/
https://discord.gg/C6M2eQZagw
https://www.youtube.com/channel/UC5Yt_8qEaAr-PiTMmGBuPCQ/videos

QuillAudits

Canada, India, Singapore, UAE, UK

www.quillaudits.com

audits@quillhash.com

For

Audit Report

December, 2024

https://www.quillaudits.com/smart-contract-audit
mailto:audits@quillhash.com

