
For

Audit Report

December, 2024

01www.quillaudits.com

W Chain Bridge - Audit Report

….. 02Executive Summary

......…... 03Number of Security Issues per Severity

... 04Checked Vulnerabilities

... 06Techniques and Methods

.. 07Types of Severity

......….. 07Types of Issues

081. Signer security can be less than expected

136. Use newer libraries

137. Adopt the use of Event emission to ease querying data from the contract

114. EnumerableSet.AddressSet is more efficient than looping over arrays

125. Missing check for chains

082. Users can invoke the claim function with same signature in the v, r, s array to
bypass the required signers ratio

113. Contract ownership can transferred to the wrong owner

08High Severity Issues

13Informational Issues

11Low Severity Issues

...…... 14Closing Summary

......….. 14Automated Tests Cases

.................................…………….. 14Disclaimer

Table of Content

https://www.quillaudits.com/smart-contract-audit

02www.quillaudits.com

W Chain Bridge - Audit Report

Project Name W Chain Bridge

Project URL https://w-chain.com/

Blockchain W Chain

Language Solidity

Commit Hash NA

Method Manual Analysis, Functional Testing, Automated Testing

Overview W Chain Bridge is the native bridge of a new L1 chain that currently
bridges their native token. Users can bridge their tokens and claim
with the signatures of the required signers ratio of the protocol.

Audit Scope The scope of this Audit was to analyze the W Chain Bridge Smart
Contracts for quality, security, and correctness.

Contracts In Scope 0xbE45De95AC59AC879526B806CC095348a9F75647

Executive Summary

Review 1 13th December 2024 - 19th December 2024

Updated Code Received 23rd December 2024

Review 2 24th December 2024

Fixed In WChainBridge
sepolia
0x4093934863e1C7dA6D6F4Fff60277Ae206263AD2
WChain Testnet
0xDA7489e962F982D0f00d5201900B315C5d01AF52

https://www.quillaudits.com/smart-contract-audit
https://w-chain.com/

03www.quillaudits.com

W Chain Bridge - Audit Report

0

0

2 12

1 1

0

0

0

0

0

0

0

0

0Open Issues

Acknowledged Issues

Partially Resolved Issues

Resolved Issues

High Medium Low Informational

High

Low

Medium

Informational
Issues Found

7

Number of Security Issues per Severity

https://www.quillaudits.com/smart-contract-audit

04www.quillaudits.com

W Chain Bridge - Audit Report

Checked Vulnerabilities

Access Management

Arbitrary write to storage

Centralization of control

Ether theft

Improper or missing events

Logical issues and flaws

Arithmetic Correctness

Race conditions/front running

SWC Registry

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Malicious libraries

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

ERC’s conformance

Dangerous strict equalities

Tautology or contradiction

Return values of low-level calls

Missing Zero Address Validation

Private modifier

Revert/require functions

Multiple Sends

Using suicide

Using delegatecall

Upgradeable safety

Using throw

https://www.quillaudits.com/smart-contract-audit

05www.quillaudits.com

W Chain Bridge - Audit Report

Checked Vulnerabilities

Using inline assembly

Style guide violation

Unsafe type inference

Implicit visibility level

06www.quillaudits.com

W Chain Bridge - Audit Report

Techniques and Methods

Throughout the audit of smart contracts, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments, match logic and expected behavior.
Token distribution and calculations are as per the intended behavior mentioned in the
whitepaper.
Implementation of ERC standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods, and tools were used to review all the smart contracts.

In this step, we have analyzed the design patterns and structure of smart contracts. A
thorough check was done to ensure the smart contract is structured in a way that will not
result in future problems.

Structural Analysis

A static Analysis of Smart Contracts was done to identify contract vulnerabilities. In this
step, a series of automated tools are used to test the security of smart contracts.

Static Analysis

Manual Analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually
analyzed, their logic was checked and compared with the one described in the
whitepaper. Besides, the results of the automated analysis were manually verified.

Code Review / Manual Analysis

In this step, we have checked the behavior of smart contracts in production. Checks were
done to know how much gas gets consumed and the possibilities of optimization of code
to reduce gas consumption.

Gas Consumption

Remix IDE, Foundry, Solhint, Mythril, Slither, Solidity Statistic Analysis.
Tools and Platforms used for Audit

https://www.quillaudits.com/smart-contract-audit

07www.quillaudits.com

W Chain Bridge - Audit Report

Every issue in this report has been assigned to a severity level. There are four levels of
severity, and each of them has been explained below.

Types of Severity

A high severity issue or vulnerability means that your smart contract can be exploited.
Issues on this level are critical to the smart contract’s performance or functionality, and
we recommend these issues be fixed before moving to a live environment.

High Severity Issues

The issues marked as medium severity usually arise because of errors and deficiencies in
the smart contract code. Issues on this level could potentially bring problems, and they
should still be fixed.

Medium Severity Issues

Low-level severity issues can cause minor impact and are just warnings that can remain
unfixed for now. It would be better to fix these issues at some point in the future.

Low Severity Issues

These are four severity issues that indicate an improvement request, a general question,
a cosmetic or documentation error, or a request for information. There is low-to-no
impact.

Informational

Types of Issues

Security vulnerabilities identified that must be resolved and are currently unresolved.
Open

These are the issues identified in the initial audit and have been successfully fixed.
Resolved

Vulnerabilities which have been acknowledged but are yet to be resolved.
Acknowledged

Considerable efforts have been invested to reduce the risk/impact of the security issue,
but are not completely resolved.

Partially Resolved

https://www.quillaudits.com/smart-contract-audit

08www.quillaudits.com

W Chain Bridge - Audit Report

1. Signer security can be less than expected

Path

Description

Function name

Recommendation

WadzBridge.sol

The claim function checks that the length of the _v array is greater than two-thirds the
signers present. With 4 signers it is expected that _v is (⅔ * 4) which yields 2.667 but Solidity
rounds down from 2.667 to 2 thereby reducing the effectiveness of the check for signers by
1 signer.

claim()

Consider wrapping up instead of down to avoid diluting the security checks put in place, i.e.
two-thirds of the signers registered must sign.

Status
Resolved

2. Users can invoke the claim function with same signature in the v,r,s array to bypass the
required signers ratio

Path

Description

Function name

WadzBridge.sol

When claiming, the valid_count variable is incremented if the signer is true in the is_signer
mapping. Users can exploit this by providing an array of v, r, and s that is populated with a
single signer address vrs. Due to the absence of a check to validate that a signer signature
has been checked before, the user can repeatedly use one signer address, populate the
array to meet the signers ratio, and then claim their funds without appropriate checks. If

claim()

High Severity Issues

09www.quillaudits.com

W Chain Bridge - Audit Report

this happens, valid_count can be incremented any number of times till it exceeds the two-
thirds of _signers security limit allowing the msg.sender to receive the amount.

POC

10www.quillaudits.com

W Chain Bridge - Audit Report

Status
Resolved

Recommendation

Auditor’s Question

Wadzchain Team’s Comment

Include a check for addresses and signatures to avoid successful claims with less signers
ratio.

The bridge function was redesigned to check for valid signers count before the deposit. This
implies that for a user to invoke the bridge function, the signers must have signed a
message to allow this user to deposit the signed amount in the message. How do you
intend to go about this for prospective users?

That's the whole point of the bridge. It has multiple signers for security so it needs to check
that those signers are valid. It's more security conscious to check before a user makes a
deposit that the signers are valid obviously. Users should call the bridge function only using
the portal app. If not, this should be considered abnormal behavior.

11www.quillaudits.com

W Chain Bridge - Audit Report

3. Contract ownership can transferred to the wrong owner

Path

Description

Function name

Recommendation

WadzBridge.sol

Access control is a critical part of smart contract security. Within this contract, access control
is handled by the Ownable library which allows the owner to relinquish their rights to a new
owner in one function call, transferOwnership(). This is risky if the new owner address
passed in is malicious or is a victim of an address poisoning attack where some bytes of the
address are changed when copied to the clipboard.

transferOwnership()

Implement two-step ownership that includes confirmation of ownership transfer from the
new owner before it is accepted.

Status
Resolved

4. EnumerableSet.AddressSet is more efficient than looping over arrays

Path

Description

Function name

WadzBridge.sol

For adding and removing signers in WadzBridge, a for loop is used to add or remove
addresses from the array - realistically, the array wouldn’t get large enough to be
prohibitively expensive. In the current implementation, an array (_signers) and a mapping
(is_signer) are used to determine the validity of addresses but the EnumerableSet provides
a more efficient route to manipulate addresses in the same format.

addSigner(), removeSigner()

Low Severity Issues

12www.quillaudits.com

W Chain Bridge - Audit Report

Recommendation
Use the Openzeppelin EnumerableSet library.

Status
Acknowledged

5. Missing check for chains

Path

Description

Function name

Recommendation

WadzBridge.sol

There currently is no check in the bridge and claim function that the chainId passed is not
the parent chain. With the contract storing the claim data attached to the various chains, a
user could pass in the same chainId for the _from_chain and _to_chain causing accounting
errors.

bridge(), claim()

Include a sanity check that the chains are not the same.

Status
Resolved

13www.quillaudits.com

W Chain Bridge - Audit Report

6. Use newer libraries

Path

Description

Function name

Recommendation

WadzBridge.sol

In the newer openzeppelin-contracts implementation (>5.0), the Ownable contract expects
to pass the owner address in the constructor, but this doesn’t occur in the WadzBridge.sol
contract currently and will revert when compiling from imports of the latest OpenZeppelin
contracts.

Ownable.constructor()

Use the latest libraries to ensure adequate security patches and updates have been made.

Status
Acknowledged

7. Adopt the use of Event emission to ease querying data from the contract

Path

Description

Recommendation

WadzBridge.sol

There are a couple of getter functions present in the contract which implies that the bridge
relies on constantly querying data from the contract. However, blockchain bridges over
time, relies on event emission and has a fast way to query data; it is cheaper and quicker to
fetch on the client side. Emitting events for critical state changes is an appropriate way to
track important transactions performed from the contract.

Use events in the contract for speedy data querying.

Status
Resolved

Informational Issues

14www.quillaudits.com

W Chain Bridge - Audit Report

Automated Tests
No major issues were found. Some false positive errors were reported by the tools. All the other
issues have been categorized above according to their level of severity.

Closing Summary
In this report, we have considered the security of W Chain Bridge. We performed our audit
according to the procedure described above.

Some issues of High, Low and informational severity were found. Some suggestions, gas
optimizations and best practices are also provided in order to improve the code quality and
security posture.

Disclaimer
QuillAudits Smart contract security audit provides services to help identify and mitigate potential
security risks in W Chain Bridge. However, it is important to understand that no security audit can
guarantee complete protection against all possible security threats. QuillAudits audit reports are
based on the information provided to us at the time of the audit, and we cannot guarantee the
accuracy or completeness of this information. Additionally, the security landscape is constantly
evolving, and new security threats may emerge after the audit has been completed.

Therefore, it is recommended that multiple audits and bug bounty programs be conducted to
ensure the ongoing security of W Chain Bridge. One audit is not enough to guarantee complete
protection against all possible security threats. It is important to implement proper risk
management strategies and stay vigilant in monitoring your smart contracts for potential security
risks.

QuillAudits cannot be held liable for any security breaches or losses that may occur subsequent
to and despite using our audit services. It is the responsibility of W Chain Bridge to implement
the recommendations provided in our audit reports and to take appropriate steps to mitigate
potential security risks.

https://www.quillaudits.com/smart-contract-audit

www.quillaudits.com

W Chain Bridge - Audit Report

Follow Our Journey

1M+
Lines of Code Audited

$30B
Secured

1000+
Audits Completed

About QuillAudits
QuillAudits is a leading name in Web3 security, offering top-notch solutions to safeguard projects

across DeFi, GameFi, NFT gaming, and all blockchain layers. With six years of expertise, we’ve
secured over 1000 projects globally, averting over $30 billion in losses. Our specialists rigorously
audit smart contracts and ensure DApp safety on major platforms like Ethereum, BSC, Arbitrum,

Algorand, Tron, Polygon, Polkadot, Fantom, NEAR, Solana, and others, guaranteeing your project’s
security with cutting-edge practices.

https://www.quillaudits.com/smart-contract-audit
https://x.com/quillaudits_ai
https://www.linkedin.com/company/quillaudits/
https://t.me/QuillAudits
https://www.reddit.com/r/QuillAudits/
https://quillaudits.medium.com/
https://discord.gg/C6M2eQZagw
https://www.youtube.com/channel/UC5Yt_8qEaAr-PiTMmGBuPCQ/videos

QuillAudits

Canada, India, Singapore, UAE, UK

www.quillaudits.com

audits@quillhash.com

For

Audit Report

December, 2024

https://www.quillaudits.com/smart-contract-audit
mailto:audits@quillhash.com

